Catching a floating treasure A genuine ex-ante forecasting experiment in real time

Christian Müller¹ and Eva Köberl²

¹German University in Cairo Egypt

www.s-e-i.ch

²ex-ETH Zurich

Berlin, 18 June 2014

The test of all knowledge is experiment.

Richard P. Feynman Physicist, Nobel Laureate Test forecasting method with survey data under *realistic* conditions. **Special features**:

- surprise indicator methodology
- genuine ex-ante forecasting in real time

Research question: Can we derive an efficient, fast and reliable forecasting tool for Swiss GDP growth?

Research gaps

- experimental economics + time series economics
- genuine ex-ante forecasting: theorists vs. practitioners
- added value of surprise indicator
- forecasting of "moving targets"

Real time analyses

- Orphanides&van Norden (2005): misleading policy conclusions
- Diebold&Rudebusch (1991): leading indicators maybe misleading
- Graff&Sturm (2010), Siliverstovs (2011): modelling of data revisions

Survey data

- Zarnowitz (1973), Öller (1990), Balke & Petersen (2002) ...: BTS data helpful
- Müller&Köberl (2007): surprise approach even more helpful?!

Experimental economics and forecasting

- Woodard & Federowsky (2011), Sornette: public forecast announcements of financial data
- Gunnar Bårdsen: Swedish GDP forecasts online

Motivation

The experiment

- Basic features
- The hypotheses
- Implementation
- Experiment evaluation

An almost infeasible horse race

- Relevance of survey data
- Relative forecasting performance

Summary

Common confounding factors in forecasting experiments

- ex-ante model choice
- selection of exogenous variables
- availability of vintage data for l.h.s. and r.h.s. variable(s)
- undocumented "expert" interventions
- the state of the art in econometrics
- hindsight
- \Rightarrow Ex-ante commitment is key!

The commitment

- forecasts posted on the web
- emailing

Hypothesis \sharp 1: A simple, parsimonious, linear time series model delivers forecasts which are

- more timely than official data
- as good as official data on average
- as good as official data in terms of forecast error variance
- serious competitors to latest rivals.

CE: forecasting (nowcasting) with surprise indicator SECO: SECO's forecasts (first releases) Begin of experiment: 2007 q3 1st intermediate results: 2011 q3 2nd intermediate results: 2014 q2 Hypothesis \sharp 2: The surprise indicator provides reliable and robust information.

• economic sophistication v. "brute force"

Why survey data?

- timely available
- (almost) not subject to revisions

Capacity utilisation: Combining level judgement and quantitative changes

Currently, are your technical capacities

- too high?
- just right?
- too low?
- Plus: Percentage change in capacity utilisation
- Result: Semantic assessment of firms' position!
 - too high? AND decrease ⇒ negative shock
 - too high/low? AND inc./dec. ⇒ adjustment to normal
 - too low AND increase \Rightarrow positive shock

Empirical characteristics of surprises

change in capacity utilisation (%)

		—	=	+
judgment	_	2.9	3.3	2.3
(level)	=	24.6	31.5	23.4
	+	3.0	4.1	4.8

Percentage shares, N = 92706, period: 1989 – 2006, quarterly frequency

Digression: The surprise indicator Figure: The surprise indicator

C:/ZHAW/Projekte/Quantifizierung/CMEK/Markov/Grafiken.odg

The general model which is going to be reduced to a special model by PcGets:

$$Y_t = D + \sum_{i=1}^{4} A_i Y_{t-i} + \sum_{i=0}^{4} B_i X_{t-1} + U_t$$
(1)

where

$$Y_t = \begin{bmatrix} \Delta y_t \\ \Delta_4 y_t \end{bmatrix}, X_t = \begin{bmatrix} em_t \\ pm_t \end{bmatrix}, U_t = \begin{bmatrix} u_t \\ 0 \end{bmatrix} \text{ and}$$
$$D = \begin{bmatrix} c & s_1 & s_2 & s_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}, A_i = \begin{bmatrix} a_{i,1} & 0 \\ 1 & 0 \end{bmatrix}, B_i = \begin{bmatrix} b_{i,1} & b_{i,2} \\ 0 & 0 \end{bmatrix}.$$

 em_t and pm_t represent the shares of qualitatively different negative surprises. y_t : SECO's latest release Note: SECO data subject to (several) revisions

- Forecast evaluation vs. final data
- comparison to SECO's genuine ex-ante approach

The floating problem Ex-ante and ex-post information

Figure: Ex-ante, ex-post information and nowcasts

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

		F 1	0				~	L	141	I IN	0	- 1	-	Y	1 0	3		0	I V	VY	~	
QUARTERLY	2	3	- i	5	6	- 1	8	5	90	1 1					4 15	16		17	8 19	20	21	22
	2006 04 2	007 01	2007 02 3	2007 03 2	007 04 2	008 01 3	2008 02	2008 03	2008 04	2009 01	2009	1.1	MARG	99 - 1 4	2010 01	2010 02 3	2010 03	2010 04	201101	201102	201103 2	01104
1999 Q 1	-0.03	-0.03	-0.03	80.0	0.08	0.25	0.25	072	0.72	2 0.72	-	72	ပမ္မာ	400	0 100	1.00	1.0	0 10	0 1.00	1.00	1.00	1.00
1999 0 2	0.41	0.41	0.41	-0.47	-0.47	-0.39	-0.39	-0.27	-0.27	-0.21		100	0.52	0.1	3 0.13	0.13	0.1	13 0.1	3 0.13	0.13	0.13	0.13
1999 0 3	1.33	1.33	1.33	1.59	1.59	1.50	1.50	1.35	1.38	1.30		1.0	-	1.1	2 1.12	1.12	1.1	12 1.1	2 1.12	1.12	1.12	1.12
1999 Q 4	3.41	3.41	3.41	3.90	3.96	3.83	3.03	3.37	3.37	3.37		3.37	2.56	2.9	6 296	2.96	2.5	I6 29	6 2.96	2.96	2.96	2.96
2000 0 1	3.82	3.82	3.82	4.05	4.06	4.10	4.10	3.85	3.85	5 3,85	5 :	3.85	3.61	3.5	1 3.61	3.61	3.6	1 3.6	1 3.61	3.51	3.61	3.61
2000 0 2	4.87	4.87	4.87	4.85	4.85	4.77	4.17	4.53	4.53	4.53	3	4.53	4.52	4.5	2 4.52	4.52	4.1	2 42	2 4.52	4.52	4.52	4.52
2000 0 3	3.57	3.51	3.57	3.65	3.65	3.70	3.70	3.90	3.92	2 3.90	2	3.92	4.63	4.0	6 4.03	4.03	4.0	13 4.0	3 4.03	4.03	4.03	4.03
2000 0 4	2.28	2.28	2.28	1.87	1.87	1.85	1,85	2.10	2.10	2.10		2.10	2.23	22	223	2.23	2.3	2	3 2.23	2.23	2.23	2.23
2001 0 1	3.19	3.19	3.19	2.0	211	3.01	3.01	2.00	2.00	2.00		2.00	2.46	2.4	8 2.40	2.40	- 24	2.	0 2.40	2.40	2.40	2.40
200102	1.41	1.41	1.41	1.00	1.50	120	1.20	1.50	1.60	1100	<u> </u>	1.50	1.00	1.5	0 150	1.60	1.1	1.0	0 1.60	1.50	1.50	1.50
200104	-0.01	-0.01	-0.01	-0.06	-0.06	-0.03	-0.03	-0.00	-0.06	-0.0		0.00	0.65	0.0	0 0.00	0.06		0.01	0.06	0.00	0.00	0.63
200101	-0.40	-0.00		0.33	0.01	0.01	0.01	0.41	0.17	0.4		0.41	0.22	0.0	0.00	0.32			0.10	0.0	0.32	0.32
2002 0 2	-0.00	-0.00	0.00	0.62	0.62	0.02	0.02	0.2	0.30	0.2		0.22	0.45	0.0	0.00	0.00		0.0	0.00	0.0	0.0	0.00
2002.0.3	0.97	0.97	0.97	071	071	0.69	0.69	0.67	0.69	0.69		0.68	0.63	0.9	9 0.99	0.89	10	0.00	9 0.89	0.09	0.89	0.99
2002.04	0.63	0.63	0.63	0.23	0.23	0.24	0.24	-0.02	-0.02	-0.00		0.02	0.68	0.0	8 0.08	0.08		8 00	6 0.08	0.08	0.08	0.08
2003.0.1	-0.93	-0.93	-0.93	-0.52	-0.52	-0.53	-0.53	-071	-0.71	-0.11		071	-0.68	-0.5	8 -0.68	-0.68	-0.6	8 -0/	8 -0.68	-0.68	-0.68	-0.68
2003 0 2	-0.63	-0.63	-0.63	-0.61	-0.61	-0.47	-0.47	-0.67	-0.67	-0.67	-	0.67	-0.81	-0.8	-0.81	-0.81	-0.0	-02	1 -0.81	-0.81	-0.81	-0.81
2003 Q 3	-0.00	-0.00	-0.00	-0.23	-0.23	-0.31	-0.31	-0.05	-0.09	-0.05	3 -	0.09	-0.10	-0.1	0 -0.10	-0.10	-9.1	10 -0.1	0 -0.10	-0.10	-0.10	-0.10
2003 Q 4	0.82	0.82	0.82	0.55	0.55	0.50	0.50	0.66	0.66	0.66	5 1	0.66	0.77	0.7	7 0.77	0.77	0.7	7 0.7	7 0.17	0.77	0.77	0.77
2004 0 1	2.81	2.81	2.81	2.62	2.62	2.45	2.45	2.5	2.54	2.5	4 - C	254	2.85	2.8	5 2.85	2.85	2.8	15 2.8	5 2.85	2.85	2.85	2.85
2004 0.2	2.67	2.67	2.67	3.12	3.12	3.18	3.18	3.40	3.40	3.40		3.40	3.29	32	9 329	3.29	3.3	19 32	9 3.29	3.29	3.29	3.29
2004 Q.3	2.25	2.25	2.25	2,31	2.31	2.32	2.32	2.05	2.09	2.05	9	2.09	2.31	2.3	1 231	2,31	2.3	1 2.	1 2.31	2.31	2.31	2,31
2004 0 4	1.51	1.51	1.51	2.10	2.10	2.18	2.18	2.11	2.11	2.11		2.11	171	12	1 1.71	1.71	1.1	1 13	1 1.71	121	1.71	171
2005 0 1	0.90	0.90	0.90	1.51	1.51	1.66	1.60	1.45	1.60	3 1.40		1.43	1.28	12	3 123	1.28	1.3	8 12	8 128	1.28	1.28	1.28
	1.57	1.57	1.57	2.01	2.01	2.00	2.01	1.85	1.85	1.85		154	1.52	1.9	C 192	1.92	1.3	2 15	2 1.92	1.92	1.92	1.92
Sec. 1	2.30	2.30	2.30	2.00	2.00	2.00	2.00	3.10	3.10	3 3.10		3.21	3.04	30	L 3.04	3.04	2.0	4 31	4 3.04	3.04	3,04	3.04
TO DO DO	a 4119	1 10	1.02	151	151	10	3.40	100	100	100	-	1 20	4.20	- 13	0 120	100	- 23	1	0 100	1.00	100	1.00
2005	Q4:m	2.05	2.05	3.24	3.24	2.0	2.45	122	100	12	-	576	173	11	3 373	173		0 11	1 2 30	120	1 30	1 30
	2.37	248	2.48	3.32	3.32	345	317	3.30	3.37	3.30		364	341	34	3 41	341	31	31 35	2 3.87	3.87	3.87	3.87
2006.0 4		2.22	2.22	2.88	2.88	2.95	3.21	2.93	2.93	2.93		321	3.11	3.1	1 3.11	3.11	21	3 26	3 263	2.53	2.63	2.63
2007 Q 1			2.43	2.09	2.69	2.65	2.76	3.01	3.01	3.01		3.33	3.30	3,3	0 3.30	3,33	3/	3 37	3 3.43	3,43	3.65	3,69
2007 0.2				2.19	279	3.02	3.03	3.40	3.40	3.40	1	372	3.60	3.5	0 3.60	3.62	33	55 3.6	5 3.65	3.65	3.55	3.55
2007 0 3					2.89	3.03	2.99	3.06	3.08	3.06	3	3.34	3.61	3.5	1 3.61	3.64	33	52 3.6	2 3.62	3.62	3.83	3.83
2007 Q 4						3.65	3.59	3.80	3.80	3.80		4.01	3.90	3.9	0 3.90	3.96	31	37 3.8	3.87	3.87	3.52	3.52
2006 0 1							3.03	295	3.10	3.11		3.20	2.97	2.9	7 2.97	3.07	3.	12 3.	2 3.12	3.28	3, 15	3.15
2008 22								2.34	2.50	2.65		212	2.94	2.9	¥ 294	3.05	32	ci 32	4 3.24	3.41	3.65	3.65
2008 0 3									1.09	1.6		1.40	1.64	1.5	4 1.54	1./8	11	N 12	1.57	191	1.01	191
2000.01										-0.60	1 1	100	-0.34	-0.3	9 254	-0.22	-0.	x -0.	o -0.35	-0.13	-0.25	-0.25
2020.0.2												~0	-2.10	-22	M -2.04	-2.47	-23	M -23	-2.90	-2.01	-1.51	~
2009.01													-2.04	-12	5 -1.22	-1.00	-11	2 - 10	0 -100	-1.00	-101	-1.61
2009.04														*12	060	0.54	0.3	8 03	6 0.26	0.24	0.12	0.12
2010.01															0.00	2.22	23	36 2.	3 1.91	1.90	2.44	2.44
2010.02																	3.	37 28	4 2.55	2.55	2.55	2.59
2010.03																		30	2 2.61	2.62	2.72	272
2010 0 4																			3.11	3.10	3.60	3.09
30 11 01																				2.39	2.45	2.34
30 11 02																					2.32	2.19
30 11 03																						1.27
2011.04																						

Figure: Finalised (green shaded) and reasonably finalised (grey shaded) data vintages

X37			- f(Σ	=	3.826	585601	68592																
				_	-				-						- 1									
	A	В	N	0	P	Q.	R	5		0		· W	_ ^ _	Y	4	AA	AB	AC	AD	AL	AF	AG	AH	A IA
1		QUARTERLY	2009-01	2009 02	2009-03	2009 04	2010 01	2010 02	2010 03	2010 04	20110	01102	201103	104	2012 01	2012 0	2012 0	2012 0	2013 0.	2013 0	2013 0	2013 0	2014 01	2014 0 201
26		2004 04	2.11	2.11	1.71	1.71	1.71	1.71	1.71	1.71	1.71			1.71	1.71	1.71	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65
27		2005 Q1	1.4	1.43	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47
28		2005 02	1.82	1.94	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1,92	1.92	1.92	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32
29		2005 Q3	3.18	3.27	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33
30		2005 Q4	3.59	3.89	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	3.65	3.65	3.65	3.65	3.65	3.65	3.65	3.65
31		2006 Q1	4.05	4.29	4.3	4.3	4.3	4.3	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57
32		2006 02	3.22	3.45	3.73	3.73	3.73	3.73	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47
33		2006 Q3	3.37	3.64	3.41	3.41	3.41	3.41	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49
34		2006 Q4	2.93	3.21	3.11	3.11	3.11	3.11	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49
35		2007 Q1	3.01	3.33	3.3	3.3	3.3	3.33	3.43	3.43	3.43	3.43	3.69	3.69	3.69	3.69	3.79	3.79	3.79	3.79	3.79	3.79	3.79	3.79
36		2007 Q2	3.4	3,72	3.0	3.6	3.6	3.62	3.65	3.65	3.65	3.65	3,55	3,55	3,55	3.55	4.26	4.26	4.26	4.26	4.26	4.26	4.28	4.28
37		2007 Q3	3.08	3.34	3.61	3.61	3.61	3.64	3.62	3.62	3.62	3.62	3.83	3.83	3.83	3.83	3.99	3.99	3.99	3.99	3.99	3.99	3.99	3.99
38		2007 Q4	3.8	4.01	3.6	3.9	3.9	3.98	3.87	3.87	3.87	3.87	3.52	3.52	3.52	3.52	3.35	3.35	3.35	3.35	3.35	3.35	3.35	3.35
39		2008 Q1	3.11	3.2	2.97	2.97	2.97	3.07	3.12	3.12	3.12	3.28	3,15	3.15	3,15	3,15	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68
40		2008 02	2.69	2.72	2.94	2.94	2.94	3.05	3.24	3.24	3.24	3.41	3.65	3.65	3.65	3.65	3.41	3.41	3.41	3.41	3.41	3.41	3.41	3.41
41		2008 Q3	1.43	1.4	1.64	1.64	1.64	1.78	1.67	1.67	1.67	1.91	1.91	1.91	1.91	1.91	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83
42		2008 Q4	-0.6	-0.67	-0.34	-0.34	-0.34	-0.22	-0.35	-0.35	-0.35	-0.13	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25
43		2009 Q1		-2.36	-2.18	-2.28	-2.54	-2.4/	-2.95	-2.95	-2.95	-2.84	-2.51	-2.51	-2.51	-2.51	-2.09	-2.09	-2.09	-2.08	-2.71	-2.71	-2.71	-2.71
44		2009 02			-2.04	-2.43	-2.62	-2.0	-3.3	-3.3	-3.3	-3.25	-3.5	-3.5	-3.50	-3.50	-3.08	-3.69	-3.69	-3.08	-3.04	-3.04	-3.54	-3.54
45		2009 03				-1.20	-1.27	-1.3	-1.00	-1.00	-1.00	-1.00	-1.61	-1.01	-1.01	-1.01	0.62	-2.91	-2.91	-2.42	-1.98	-1.98	-1.98	-1.98
40		2009 04					0.0	0.04	0.20	0.20	0.20	0.24	0.12	0.12	0.12	0.12	2.25	0.52	0.52	0.51	0.00	0.00	0.00	0.00
4/		2010 01						2.22	2.20	2.13	2.66	2.66	2.44	2.44	2.44	2.44	2.00	2.30	2.30	2.31	2.30	2.30	2.30	2.30
48		2010 02							3.31	2.04	2.00	2.00	2.33	2.00	2.00	2.00	2.63	2.62	2.62	3.33	2.50	3.30	2.50	2.50
49		2010 03								3.02	2.01	2.02	2.12	2.72	2.72	2.72	2.76	2.03	2.03	2.04	2.00	2.00	2.00	2.00
- 20	-	2011 017									9.11			2.24	2.20	2.40	2.07	2.07	2.07	2.74	2.07	2.07	2.07	2.07
		2011 02												2 10	2.17	2.30	2.5	2.60	2.60	2.26	2 10	2.10	2.10	2.10
52			-											1 27	1.81	1.80	1.64	1.64	1.64	1 20	1.22	1.22	1.22	1.22
54	-	2011-02										-	~		1.25	2	0.82	0.82	0.82	0.73	0.81	0.81	0.81	0.81
54		2012 01													1.20	2.02	1.2	1.00	1.01	0.03	0.77	0.77	0.77	0.77
56		2012 02															0.55	0.35	0.30	0.29	0.63	0.53	0.63	0.53
57		2012 03																1.41	1.24	1.28	1.31	1.31	1.31	1.31
58		2012 Q4																	1.38	1.37	1.58	1.58	1.58	1.58
59		2013 01																		1.09	1.18	1.22	1.32	1.35
-00-		2013 03																			2.40	1.92	2.08	2.08
62		2013 Q4																				1.04	1.7	1.7
63		2014 01																						2.01
64		2014 02																						
65		2014 03																						

Figure: Data vintages and data revisions

Observations

- No finalised data for entire sample
- Revisions after more than seven years
- No finalised data for experiment period available!
- 1st intermediate results: Reasonably finalised data: 1999 2010q3 (N = 11)
- 2nd intermediate results: Reasonably finalised data: 2007q3 2010q1 (N = 11)
- 2nd intermediate results: moving target data: 2007q3 2012q1 (N = 19)

Characteristics of revisions I

seco quarterly GDP estimates

quarters elapsed since first release

Figure: Mean revision: Cumulated sum of average revisions -3.2% (2006–2010)

Characteristics of revisions II

Standard deviations of revisions

Figure: Standard deviation of revisions

Characteristics of revisions

Figure: Mean, minimum and maximum of SECO revisions (final data: 2010q1)

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Berlin, 18 June 2014 25 / 46

The floating problem Ex-ante and ex-post information

Figure: Seco data releases, nowcasts and narrow forecasting window

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

The floating problem Ex-ante and ex-post information

Figure: Seco data releases, nowcasts and wide forecasting window

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Genuine ex-ante forecasts

• SECO first releases v. GDP nowcast (surprise indicator)

Forecast evaluations													
model	MFE	MAFE	RMSFE										
2007q3 through 20	010q1 (<i>N</i>	= 11 one-	step forecasts)										
SECO first	052	.645	.647										
GDP nowcast	.142	.653	.584										
2007q3 through 20	012q1 (<i>N</i>	= 19 one-	step forecasts)										
SECO first	037	.552	.505										
GDP nowcast	.101	.541	.472										

Forecast evaluation	for $N = 11$ one	-step forecast Test statistics	s: Test statistics
model	sign change	D-M MAFE	D-M RMSFE
GDP nowcast	3 (.344)	n.a.	n.a.
SECO first	4 (.753)	.05 (.48)	23 (.59)

Diebold-Mariano modified test statistics (p-values for two-sided test)

Evaluation summary

- indicator forecast errors with lowest variance
- SECO forecasts not significantly better

CAVEAT: Benchmark still going to be revised.

Summary

Experiment largely successful

- Evidence for surprise indicator's informational advantage
- Forecasting model delivers
 - timely
 - accurate
 - efficient
 - GDP nowcasts.

Further research

- Develop economy-wide, sector-specific, regional surprise indicators
- Investigate role of y_t (SECO's first release)
- Employ more sophisticated (but simple) models in genuine ex-ante experiment
- Note: Continuous evaluation of ongoing experiment required.

Catching a floating treasure

www.s-e-i.ch

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Berlin, 18 June 2014 35 / 40

■ release 2007 Q3 □ release 2011 Q3

Figure: Swiss GDP growth (y-o-y) at the beginning and at the end of the experiment

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Berlin, 18 June 2014 36 / 46

The floating problem Ex-ante and ex-post information

inuro Ex anto an post information and nowapate

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Characteristics of revisions

Figure: Mean, minimum and maximum of SECO revisions (final data)

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Characteristics of revisions

Figure: Mean, minimum and maximum of SECO revisions (final data: 2010q1)

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Berlin, 18 June 2014 39 / 40

Characteristics of revisions I

seco quarterly GDP estimates

quarters elapsed since first release

Figure: Mean revision: Cumulated sum of average revisions -3.2% (2006–2010)

Characteristics of revisions II

Standard deviations of revisions

Figure: Standard deviation of revisions

Müller, Köberl (GUC & ETHZ)

Genuine ex-ante forecasting experiment

Berlin, 18 June 2014 41 / 4

		F 1	0				~	L	141	I IN	0	- 1	-	Y	1 0	3		0	I V	VY	~	
QUARTERLY	2	3	- i	5	6	- 1	8	5	90	1 1					4 15	16		17	8 19	20	21	22
	2006 04 2	007 01	2007 02 3	2007 03 2	007 04 2	008 01 3	2008 02	2008 03	2008 04	2009 01	2009	1.1	MARG	99 - 1 4	2010 01	2010 02 3	2010 03	2010 04	201101	201102	201103 2	01104
1999 Q 1	-0.03	-0.03	-0.03	80.0	0.08	0.25	0.25	072	0.72	2 0.72	-	72	ပမ္မာ	400	0 100	1.00	1.0	0 10	0 1.00	1.00	1.00	1.00
1999 0 2	0.41	0.41	0.41	-0.47	-0.47	-0.39	-0.39	-0.27	-0.27	-0.21		100	0.52	0.1	3 0.13	0.13	0.1	13 0.1	3 0.13	0.13	0.13	0.13
1999 0 3	1.33	1.33	1.33	1.59	1.59	1.50	1.50	1.35	1.38	1.30		1.0	-	1.1	2 1.12	1.12	1.1	12 1.1	2 1.12	1.12	1.12	1.12
1999 Q 4	3.41	3.41	3.41	3.90	3.96	3.83	3.03	3.37	3.37	3.37		3.37	2.56	2.9	6 296	2.96	2.5	I6 29	6 2.96	2.96	2.96	2.96
2000 0 1	3.82	3.82	3.82	4.05	4.06	4.10	4.10	3.85	3.85	5 3,85	5 :	3.85	3.61	3.5	1 3.61	3.61	3.6	1 3.6	1 3.61	3.51	3.61	3.61
2000 0 2	4.87	4.87	4.87	4.85	4.85	4.77	4.17	4.53	4.53	4.53	3	4.53	4.52	4.5	2 4.52	4.52	4.1	2 42	2 4.52	4.52	4.52	4.52
2000 0 3	3.57	3.51	3.57	3.65	3.65	3.70	3.70	3.90	3.92	2 3.90	2	3.92	4.63	4.0	6 4.03	4.03	4.0	13 4.0	3 4.03	4.03	4.03	4.03
2000 0 4	2.28	2.28	2.28	1.87	1.87	1.85	1,85	2.10	2.10	2.10		2.10	2.23	22	223	2.23	2.3	2	3 2.23	2.23	2.23	2.23
2001 0 1	3.19	3.19	3.19	2.0	211	3.01	3.01	2.00	2.00	2.00		2.00	2.46	2.4	8 2.40	2.40	- 24	2.	0 2.40	2.40	2.40	2.40
200102	1.41	1.41	1.41	1.00	1.50	120	1.20	1.50	1.60	1100	<u> </u>	1.50	1.00	1.5	0 150	1.60	1.1	1.0	0 1.60	1.50	1.50	1.50
200104	-0.01	-0.01	-0.01	-0.06	-0.06	-0.03	-0.03	-0.00	-0.06	-0.0		0.00	0.65	0.0	0 0.00	0.06		0.01	0.06	0.00	0.00	0.63
200101	-0.40	-0.00		0.33	0.01	0.01	0.01	0.41	0.17	0.4		0.41	0.22	0.0	0.00	0.32			0.10	0.0	0.32	0.32
2002 0 2	-0.00	-0.00	0.00	0.62	0.62	0.02	0.02	0.2	0.30	0.2		0.22	0.45	0.0	0.00	0.00		0.0	0.00	0.0	0.0	0.00
2002.0.3	0.97	0.97	0.97	071	071	0.69	0.69	0.67	0.69	0.62		0.68	0.63	0.9	9 0.99	0.89	10	0.00	9 0.89	0.09	0.89	0.99
2002.04	0.63	0.63	0.63	0.23	0.23	0.24	0.24	-0.02	-0.02	-0.00		0.02	0.68	0.0	8 0.08	0.08		8 00	6 0.08	0.08	0.08	0.08
2003.0.1	-0.93	-0.93	-0.93	-0.52	-0.52	-0.53	-0.53	-071	-0.71	-0.11		071	-0.68	-0.5	8 -0.68	-0.68	-0.6	8 -0/	8 -0.68	-0.68	-0.68	-0.68
2003 0 2	-0.63	-0.63	-0.63	-0.61	-0.61	-0.47	-0.47	-0.67	-0.67	-0.67	-	0.67	-0.81	-0.8	-0.81	-0.81	-0.0	-02	1 -0.81	-0.81	-0.81	-0.81
2003 Q 3	-0.00	-0.00	-0.00	-0.23	-0.23	-0.31	-0.31	-0.05	-0.09	-0.05	3 -	0.09	-0.10	-0.1	0 -0.10	-0.10	-9.1	10 -0.1	0 -0.10	-0.10	-0.10	-0.10
2003 Q 4	0.82	0.82	0.82	0.55	0.55	0.50	0.50	0.66	0.66	0.66	5 1	0.66	0.77	0.7	7 0.77	0.77	0.7	7 0.7	7 0.17	0.77	0.77	0.77
2004 0 1	2.81	2.81	2.81	2.62	2.62	2.45	2.45	2.5	2.54	2.5	4 - C	254	2.85	2.8	5 2.85	2.85	2.8	15 2.8	5 2.85	2.85	2.85	2.85
2004 0.2	2.67	2.67	2.67	3.12	3.12	3.18	3.18	3.40	3.40	3.40		3.40	3.29	32	9 329	3.29	3.3	19 32	9 3.29	3.29	3.29	3.29
2004 Q.3	2.25	2.25	2.25	2,31	2.31	2.32	2.32	2.05	2.09	2.05	9	2.09	2.31	2.3	1 231	2,31	2.3	1 2.	1 2.31	2.31	2.31	2,31
2004 0 4	1.51	1.51	1.51	2.10	2.10	2.18	2.18	2.11	2.11	2.11		2.11	171	12	1 1.71	1.71	1.1	1 13	1 1.71	121	1.71	171
2005 0 1	0.90	0.90	0.90	1.51	1.51	1.66	1.60	1.45	1.60	3 1.40		1.43	1.28	12	3 123	1.28	1.3	8 12	8 128	1.28	1.28	1.28
	1.57	1.57	1.57	2.01	2.01	2.00	2.01	1.85	1.85	1.85		154	1.52	1.9	C 192	1.92	1.3	2 15	2 1.92	1.92	1.92	1.92
Sec. 1	2.30	2.30	2.30	2.00	2.00	2.00	2.00	3.10	3.10	3 3.10		3.21	3.04	30	L 3.04	3.04	2.0	4 31	4 3.04	3.04	3,04	3.04
TO DO DO	a 4119	1 10	1.02	151	151	10	3.40	100	100	100	-	1 20	4.20	- 13	0 120	100	- 23	1	0 100	1.00	100	1.00
2005	Q4:m	2.05	2.05	3.24	3.24	2.0	2.45	122	100	12	-	576	173	11	3 373	173	2.	0 11	1 2 30	120	1 30	1 30
	2.37	248	2.48	3.32	3.32	345	317	3.30	3.37	3.30		364	341	34	3 41	341	31	31 35	2 3.87	3.87	3.87	3.87
2006.0 4		2.22	2.22	2.88	2.88	2.95	3.21	2.93	2.93	2.93		321	3.11	3.1	1 3.11	3.11	21	3 26	3 263	2.53	2.63	2.63
2007 Q 1			2.43	2.09	2.69	2.65	2.76	3.01	3.01	3.01		3.33	3.30	3,3	0 3.30	3,33	3/	3 37	3 3.43	3,43	3.65	3,69
2007 0.2				2.19	279	3.02	3.03	3.40	3.40	3.40	1	372	3.60	3.5	0 3.60	3.62	33	55 3.6	5 3.65	3.65	3.55	3.55
2007 0 3					2.89	3.03	2.99	3.06	3.08	3.06	3	3.34	3.61	3.5	1 3.61	3.64	33	52 3.6	2 3.62	3.62	3.83	3.83
2007 Q 4						3.65	3.59	3.80	3.80	3.80		4.01	3.90	3.9	0 3.90	3.96	31	37 3.8	3.87	3.87	3.52	3.52
2006 0 1							3.03	295	3.10	3.11		3.20	2.97	2.9	7 2.97	3.07	3.	12 3.	2 3.12	3.28	3, 15	3.15
2008 22								2.34	2.50	2.65		212	2.94	2.9	¥ 294	3.05	32	ci 32	4 3.24	3.41	3.65	3.65
2008 0 3									1.09	1.6		1.40	1.64	1.5	4 1.54	1./8	11	N 12	1.57	191	1.01	191
2000.01										-0.60	1 1	100	-0.34	-0.3	9 254	-0.22	-0.	x -0.	o -0.35	-0.13	-0.25	-0.25
2020.0.2												~0	-2.10	-22	M -2.04	-2.47	-23	M -23	-2.90	-2.01	-1.51	~
2009.01													-2.04	-12	5 -1.22	-1.00	-11	2 - 10	0 -100	-1.00	-101	-1.61
2009.04														*12	060	0.54	0.3	8 03	6 0.26	0.24	0.12	0.12
2010.01															0.00	2.22	23	36 2.	3 1.91	1.90	2.44	2.44
2010.02																	3.	37 28	4 2.55	2.55	2.55	2.59
2010.03																		30	2 2.61	2.62	2.72	272
2010 0 4																			3.11	3.10	3.60	3.09
30 11 01																				2.39	2.45	2.34
30 11 02																					2.32	2.19
30 11 03																						1.27
2011-04																						

Figure: Finalised (green shaded) and reasonably finalised (grey shaded) data vintages

X37			▼ f(s)	Σ	=	3.826	585601	68592					_											
	A	В	N	0	Р	0	B	S	Т	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AL A
1		QUARTERLY	2009-01	2009-02	2009-03	2009.04	15	18	2010.03	18	20110	20	21	22	23	24	25	26	27	28	29	30	31	32
26		2004.04	2 11	2008 02	1 71	1 71	1 71	1 71	1 71	1 71	171	41142	2011/20	1.71	171	171	1.65	1 85	1.65	1.65	1.65	1.65	1.65	1.65
27		2005 01	14	1.43	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47
28		2005 02	1.82	1.94	1.92	1.97	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32
29		2005 Q3	3.18	3.27	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.04	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33
30		2005 Q4	3.59	3.89	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	4.28	3.65	3.65	3.65	3.65	3.65	3.65	3.65	3.65
31		2006 Q1	4.05	4.29	4.3	4.3	4.3	4.3	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57
32		2006 Q2	3.22	3.45	3.73	3.73	3.73	3.73	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47
33		2006 Q3	3.37	3.64	3.41	3.41	3.41	3.41	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.49	3.49	3.49	3.49	3,49	3.49	3,49	3.49
34		2006 Q4	2.93	3.21	3.11	3.11	3.11	3.11	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49
35		2007 Q1	3.01	3.33	3.3	3.3	3.3	3.33	3.43	3.43	3.43	3.43	3.69	3.69	3.69	3.69	3.79	3.79	3.79	3.79	3.79	3.79	3.79	3.79
36		2007 02	3.4	3.72	3.0	3.6	3.0	3.62	3.65	3.65	3.65	3.65	3.55	3.55	3.55	3.55	4.26	4.26	4.26	4.26	4.26	4.28	4.28	4.28
37		2007 Q3	3.08	3.34	3.61	3.61	3.61	3.64	3.62	3.62	3.62	3.62	3.83	3.83	3.83	3.83	3.99	3.99	3.99	3.99	3.99	3.99	3.99	3.99
38		2007 Q4	3.8	4.01	3.9	3.9	3.9	3.96	3.87	3.87	3.87	3.87	3.52	3.52	3.52	3.52	3.35	3.35	3.35	3.35	3.35	3.35	3.35	3.35
39		2008 Q1	3.11	3.2	2.97	2.97	2.97	3.07	3.12	3.12	3.12	3.28	3.15	3.15	3.15	3.15	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68
40		2008 02	2.69	2.72	2.94	2.94	2.94	3.05	3.24	3.24	3.24	3.41	3.65	3.65	3.65	3.65	3.41	3.41	3.41	3.41	3.41	3.41	3.41	3.41
41		2008 Q3	1.43	1.6	1.64	1.64	1.64	1.78	1.67	1.67	1.67	1.91	1.91	1.91	1.91	1.91	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83
42		2008 Q4	-0.6	-0.67	-0.34	-0.34	-0.34	-0.22	-0.35	-0.35	-0.35	-0.13	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25
43		2009 Q1		-2.36	-2.18	-2.28	-2.54	-2.47	-2.95	-2.95	-2.95	-2.84	-2.51	-2.51	-2.51	-2.51	-2.09	-2.09	-2.09	-2.08	-2.71	-2.71	-2.71	-2.71
44		2009 Q2			-2.04	-2.43	-2.62	-2.6	-3.3	-3.3	-3.3	-3.25	-3.5	-3.5	-3.50	-3.50	-3.69	-3.69	-3.69	-3.68	-3.54	-3.54	-3.54	-3.54
45		2009 Q3				-1.25	-1.27	-1.3	-1.66	-1.66	-1.66	-1.66	-1.61	-1.61	-1.61	-1.61	-2.41	-2.41	-2.41	-2.42	-1.98	-1.98	-1.98	-1.98
46		2009 Q4					0.6	0.54	0.28	0.26	0.28	0.24	0.12	0.12	0.12	0.12	0.52	0.52	0.52	0.51	0.55	0.55	0.55	0.55
47		2010 Q1						2.22	2.26	2.13	1.91	1.9	2.44	2.44	2.44	2.44	2.35	2.35	2.35	2.31	2.30	2.30	2.30	2.30
48		2010 02							3.37	2.84	2.55	2.55	2.59	2.59	2.59	2.59	3.4	3.40	3.40	3.33	3.30	3.30	3.30	3.30
49		2010 Q3								3.02	2.61	2.62	2.72	2.72	2.72	2.72	2.63	2.63	2.63	2.54	2.58	2.58	2.58	2.58
50											3.11	3.1	3.09	3.09	3.09	3.09	3.76	3.76	3.76	3.64	3.63	3.63	3.63	3.63
51		2011 01												2.34	2.39	2.40	2.87	2.87	2.87	2.74	2.87	2.87	2.87	2.87
52		2011 Q2											2.32	2.19	2.17	2.30	2.5	2.50	2.50	2.35	2.19	2.19	2.19	2.19
53	-												-	1.27	1.61	1.69	1.54	1.64	1.64	1.38	1.32	1.32	1.32	1.32
54		2011 04										_			1.25	2	0.82	0.82	0.82	0.73	0.81	0.81	0.81	0.81
55		2012 Q1														2.02	1.2	1.00	1.01	0.93	0.77	0.77	0.77	0.77
56		2012 Q2															0.00	0.35	0.30	0.29	0.53	0.53	0.53	0.53
57		2012 Q3																1.41	1.24	1.28	1.31	1.31	1.31	1.31
-26-		2013 01																	1.30	1.09	1 18	1.00	1.32	1 35
60		2013 02																			2.48	2.54	2.68	2.68
61		2013 03																				1.92	2.13	2.13
62		2013 04																					1.7	1.7
- 29		2014 01																						2.01
65		2014 03																						

Figure: Data vintages and data revisions

The floating problem Ex-ante and ex-post information

Müller, Köberl (GUC & ETHZ) Genuine ex-ante forecasting experiment Berlin, 18 June 2014 44 /

The floating problem Ex-ante and ex-post information

Müller, Köberl (GUC & ETHZ) Genuine ex-ante forecasting experiment Berlin, 18 June 2014

Figure: Final, reasonably final, provisional GDP data and surprise indicator nowcasts